Enantioselective Total Synthesis of Ecteinascidin 743

E. J. Corey,* David Y. Gin, and Robert S. Kania

Department of Chemistry, Harvard University Cambridge, Massachusetts 02138

Received July 18, 1996

Described herein is the first total synthesis of ecteinascidin 743 (1),¹ an exceedingly potent and rare marine-derived antitumor agent which is slated for clinical trials when adequate quantities become available.^{2,3} The synthesis is enantio- and stereocontrolled, convergent and short (Scheme 1).

The α,β -unsaturated malonic ester 2, prepared as a mixture of E and Z isomers from 2-(benzyloxy)-3-methyl-4,5-(methylenedioxy)benzaldehyde4a and allyl 2,2-dimethoxyethyl malonate^{4b} (2 equiv of piperidine and 4 equiv of acetic acid in C₆H₆ or C₇H₈ at 23 °C for 18 h; 99%), was subjected to selective allyl ester cleavage (Et₃N-HCOOH, catalytic Pd(PPh₃)₄, 23 °C, 4 h; 94% yield), Curtius rearrangement (1.2 equiv of (PhO)₂P-(O)N₃, 4 equiv of Et₃N, in C₇H₈ containing 4 Å molecular sieves at 70 °C for 2 h), and reaction of the intermediate isocyanate with benzyl alcohol at 23 °C for 1 h to form 3 stereospecifically (93% yield).⁵ Hydrogenation of **3** at 3 atm with Rh[(COD)-(R,R)-DIPAMP]⁺BF₄⁻ as catalyst at 23 °C for 16 h afforded **4** in 97% yield and 96% ee.⁶ Acetal cleavage of 4 (10 equiv BF₃·Et₂O and 10 equiv of H₂O in CH₂Cl₂ at 0 °C for 10 min), isolation, and exposure of the resulting aldehyde to BF₃·Et₂O (17 equiv) and 4 Å molecular sieves in CH₂Cl₂ at 23 °C for 18 h gave the bridged lactone 5 in 73% yield.⁷ Hydrogenolysis of 5 (1 atm H₂, 10% Pd/C, EtOAc, 23 °C, 6 h) produced the free amino phenol 6 in 100% yield. The protected α -amino ester 7 was synthesized by an analogous route, starting with 3,5-bis-((tert-butyldimethylsilyl)oxy)-4-methoxybenzaldehyde and methyl hydrogen malonate, and then reduced (2 equiv of diisobu-

(2) Science 1994, 266, 1324.

(3) The current clinical plan calls for the administration of three 0.5 mg doses of 1 per patient; personal communication from Dr. Glynn Faircloth, PharmaMar USA, Cambridge, MA.

(4) (a) Prepared from 3,4-(methylenedioxy)phenyl methoxymethyl ether by the sequence: (1) lithiation at C-2 (3 equiv of BuLi, 3 equiv of tetramethylethylene diamine in hexane at 0 °C for 4 h) and reaction with CH₃I (6 equiv at $-78 \rightarrow 23$ °C over 15 min) to afford exclusively the 2-methyl derivative (87%); (2) ortho lithiation (2 equiv of BuLi in THF at -30 °C for 13 h) and subsequent formylation with 4 equiv of DMF (64%) yield); (3) cleavage of the MeOCH₂ protecting group (0.55 equiv of CH₃-SO₃H in CH₂Cl₂ at 0 $^{\circ}$ C; (4) treatment of the resulting 3-methyl-4,5-(methylenedioxy)salicylaldehyde with 1.5 equiv of NaH in DMF at 0 °C for 5 min and 2 equiv of benzyl bromide at 23 °C for 40 min (86% overall). (b) Prepared from the monoallyl ester of malonic acid by conversion to the mixed anhydride with BOP chloride (Aldrich) and reaction with 2,2dimethoxyethanol.

(5) This step, which involves isomerization possibly of the intermediate isocyanate, represents a generally useful process for the stereospecific synthesis of such compounds.

(6) Koenig, K. E. In Asymmetric Synthesis; Morrison, J. D., Ed.; Academic Press, Inc.: Orlando, FL, 1985; Vol. 5, p 71. (7) The conversion $4 \rightarrow 5$ demonstrates a method for control of

stereochemistry in the tetrahydroisoquinoline series.

tylaluminum hydride in CH_2Cl_2 at -78 °C for 1 h) to give the chiral aldehyde 8 (>90% yield).

The next stage of the synthesis, which involved the combination of the building blocks 6 and 8 and subsequent elaboration to construct the key monobridged pentacyclic intermediate 10, commenced with the reaction of 6 and 8 in HOAc containing 25 equiv of KCN at 23 °C for 18 h to give a coupled phenolic α -amino nitrile (61%) and subsequent *O*-allylation to give allyl ether 9 in 87% yield (2 equiv of Cs₂CO₃ and 5 equiv of allyl bromide in DMF at 23 °C for 1 h). Treatment of 9 with 1.2 equiv of diisobutylaluminum hydride in toluene at -78 °C for 5 h effected the selective conversion of the lactone function to a lactol which was desilylated by exposure to excess KF·2H₂O in CH₃OH at 23 °C for 20 min and cyclized to pentacycle 10 by internal Mannich bisannulation with 20 equiv of CH₃SO₃H in CH₂Cl₂ in the presence of 3 Å molecular sieves at 23 °C for 5 h (55% overall from 9). Selective trifluoromethanesulfonation of the least hindered phenolic hydroxyl (5 equiv of Tf₂NPh, Et₃N, 4-(dimethylamino)pyridine (DMAP) in CH₂Cl₂ at 23 °C for 6 h; 72% yield) was followed by (1) selective silvlation of the primary hydroxyl (excess tert-butyldiphenylsilyl chloride-DMAP in CH₂Cl₂ at 23 °C for 13 h; 89%), (2) protection of the remaining phenolic group as the methoxymethyl ether (MeOCH₂Br and *i*-Pr₂NEt in CH₂Cl₂ at 23 °C for 20 min; 92%), (3) double deallylation (Bu₃SnH, catalytic Cl₂Pd(PPh₃)₂, excess HOAc in CH₂Cl₂ at 23 °C for 15 min; 100%), (4) reductive N-methylation (excess Formalin, NaBH₃CN, HOAc in CH₃CN at 23 °C for 30 min; 95%), and (5) replacement of CF₃SO₃ by CH₃ (excess Me₄Sn, Cl₂Pd(Ph₃P)₂, LiCl, DMF, 80 °C, 2 h) to give 11 in 83% yield. Oxidation of the phenol 11 with 1.1 equiv of (PhSeO)₂O in CH₂Cl₂ at 23 °C for 15 min effected position-selective angular hydroxylation to yield after desilylation (2 equiv of Bu₄NF in THF at 23 °C for 10 min) the dihydroxy dienone 12 (75% from 11).

The last three rings of ecteinascidin 743, the 10-membered lactone bridge and the spiro tetrahydroisoquinoline subunit, were then added in the final stage of the synthesis of 1 by a novel sequence of reactions. The primary hydroxyl function of 12 was esterified with (S)-N-((allyloxy)carbonyl)-S-(9-fluorenylmethyl)cysteine using 5 equiv of 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride and 5 equiv of DMAP in CH₂Cl₂ at 23 °C for 30 min to form **13** (91%). Compound **13** was then transformed in one flask to the bridged lactone in 79% overall yield by the following operations: (1) reaction of 13 with the in situ-generated Swern reagent from excess triflic anhydride and DMSO at -40 °C for 30 min,^{8a} (2) addition of *i*-Pr₂NEt and warming to 0 °C for 30 min to form the exendo quinone methide,^{8b} (3) quenching with tert-butyl alcohol (to destroy excess Swern reagent), (4) addition of excess N-tertbutyl-N', N', N''-tetramethylguanidine⁹ to convert the 9-fluorenylmethyl thiolether to the thiolate ion and to promote nucleophilic addition of sulfur to the guinone methide to generate the 10-membered lactone bridge, and (5) addition of excess Ac₂O to acetylate the resulting phenoxide group. The N-((allyloxy)carbonyl) group of 14 was cleaved (excess Bu₃-SnH, HOAc, and catalytic Cl₂Pd(PPh₃)₂ in CH₂Cl₂ at 23 °C for 5 min; 84%), and the resulting α -amino lactone was oxidized to the corresponding α -keto lactone by transamination with the methiodide of pyridine-4-carboxaldehyde, 1,8-diazabicyclo-[6.4.0]undec-7-ene (DBU), and DMF in CH₂Cl₂ at 23 °C for 40 min to give 15 (70%). Reaction of 15 with 2-[3-hydroxy-

⁽¹⁾ The pioneering research in this area is due to Prof. Kenneth L. Rinehart and his group, see: (a) Rinehart, K. L.; Shield, L. S. In Topics in Pharmaceutical Sciences; Breimer, D. D., Crommelin, D. J. A., Midha, K. K., Eds.; Amsterdam Medical Press: Noordwijk, The Netherlands, 1989; pp 613. (b) Rinehart, K. L.; Holt, T. G.; Fregeau, N. L.; Keifer, P. A.; Wilson, G. R.; Perun, T. J., Jr.; Sakai, R.; Thompson, A. G.; Stroh, J. G.; Shield, L. S.; Seigler, D. S.; Li, L. H.; Martin, D. G.; Grimmelikhuijzen, C. J. P.; Gäde, G. J. Nat. Prod. 1990, 53, 771. (c) Rinehart, K. L.; Sakai, R.; Holt, T. G.; Fregeau, N. L.; Perun, T. J., Jr.; Seigler, D. S.; Wilson, G. R.; Shield, L. S. *Pure Appl. Chem.* **1990**, *62*, 1277. (d) Rinehart, K. L.; Holt, T. G.; Fregeau, N. L.; Stroh, J. G.; Keifer, P. A.; Sun, F.; Li, L. H.; Martin, D. G. J. Org. Chem. 1990, 55, 4512. (e) Wright, A. E.; Forleo, D. A.; Gunawardana, G. P.; Gunasekera, S. P.; Koehn, F. E.; McConnell, O. J. Org. Chem. 1990, 55, 4508. (f) Sakai, R.; Rinehart, K. L.; Guan, Y.; Wang, H.-J. Proc. Natl. Acad. Sci. U.S.A. 1992, 89, 11456

^{(8) (}a) This step converts the tertiary hydroxyl group of 13 to the O-dimethylsulfonium derivative. The use of oxalyl chloride–DMSO as reagent is unsatisfactory due to interference by chloride in the subsequent steps of quinone methide formation and addition. (b) This step generates the quinone methide probably by cycloelimination of the Swern type oxosulfonium ylide intermediate.

⁽⁹⁾ Barton, D. H. R.; Elliott, J. D.; Géro, S. D. J. Chem. Soc., Perkin Trans. 1 1982, 2085.

Scheme 1^a

^{*a*} Reagents: (a) Et_3N -HCO₂H, Pd(PPh₃)₄; (b) (PhO)₂P(O)N₃, Et_3N , 4 Å molecular sieves; 70 °C, BnOH; (c) Rh[(COD))-(*R*,*R*)-DiPAMP]⁺BF₄⁻, 3 atm of H₂; (d) BF₃·OEt₂, H₂O; (e) BF₃·OEt₂, 4 Å molecular sieves; (f) 10% Pd/C, H₂; (g) DIBAL, -78 °C; (h) HOAc, KCN; (i) allyl bromide, Cs₂CO₃; (j) KF·2H₂O; (k) CH₃SO₃H, 3 Å molecular sieves; (l) Tf₂NPh, Et₃N, DMAP; (m) TBDPSCl, DMAP; (n) MOMBr, *i*-Pr₂NEt; (o) PdCl₂(PPh₃)₂, Bu₃SnH, HOAc; (p) CH₂O, NaBH₃CN, HOAc; (q) PdCl₂(PPh₃)₂, SnMe₄, LiCl, 80 °C; (r) (PhSeO)₂O; (s) TBAF; (t) Alloc-Cys(CH₂Fl)-OH, EDC·HCl, DMAP; (u) DMSO, Tf₂O, -40 °C; *i*-Pr₂NEt, 0 °C; *t*-BuOH, 0 °C; (Me₂N)₂C=N-*t*-Bu, 23 °C; Ac₂O, 23 °C; (v) [*N*-methylpyridinium-4-carboxaldehyde]⁺I⁻, DBU, (CO₂H)₂; (w) **16**, silica gel; (x) CF₃CO₂H, H₂O; (y) AgNO₃, H₂O.

4-methoxyphenyl]ethylamine (**16**) in EtOH in the presence of silica gel at 23 °C generated the spiro tetrahydroisoquinoline stereospecifically (82%) which was then subjected to methoxymethyl cleavage (4:1:1 CF₃CO₂H–H₂O–THF at 23 °C for 9 h) and replacement of CN by HO (AgNO₃ in CH₃CN–H₂O at 23 °C for 11 h) to form in high yield ecteinascidin 743 (**1**), identical in all respects with an authentic sample.¹⁰

The synthetic approach reported herein provides access not only to **1** but also to a host of other members of the ecteinascidin family and analogs, as well as to related simpler structures such as the saframycins.¹¹ **Supporting Information Available:** Experimental procedures and spectral data (43 pages). See any current masthead page for ordering and Internet access instructions.

JA962480T

Acknowledgment. This research was assisted financially by the National Institutes of Health, a Canadian NSERC fellowship to D.Y.G., and a predoctoral NSF fellowship to R.S.K.

⁽¹¹⁾ For previous work on the synthesis of the saframycins, see: (a) Fukuyama, T.; Sachleben, R. A. J. Am. Chem. Soc. **1982**, 104, 4957. (b) Fukuyama, T.; Yang, L.; Ajeck, K. L.; Sachleben, R. A. J. Am. Chem. Soc. **1990**, 112, 3712. (c) Saito, N.; Yamauchi, R.; Nishioka, H.; Ida, S.; Kubo, A. J. Org. Chem. **1989**, 54, 5391.

⁽¹⁰⁾ Obtained from Prof. K. L. Rinehart and PharmaMar USA.